Global Well-posedness and Limit Behavior for the Modified Finite-depth-fluid Equation

نویسندگان

  • ZIHUA GUO
  • BAOXIANG WANG
چکیده

Considering the Cauchy problem for the modified finite-depthfluid equation ∂tu− Gδ(∂ 2 xu)∓ u 2ux = 0, u(0) = u0, where Gδf = −iF [coth(2πδξ)− 1 2πδξ ]Ff , δ&1, and u is a real-valued function, we show that it is uniformly globally well-posed if u0 ∈ Hs (s ≥ 1/2) with ‖u0‖L2 sufficiently small for all δ&1. Our result is sharp in the sense that the solution map fails to be C in Hs(s < 1/2). Moreover, we prove that for any T > 0, its solution converges in C([0, T ]; Hs) to that of the modified Benjamin-Ono equation if δ tends to +∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

Well-posedness and Finite Dimensional Approximation for a Modified Camassa-Holm Equation

We establish the local well-posedness in H(S) with any s > 72 for a modified Camassa-Holm equation derived as the EPDiff equation with respect to the H(S) metric, and obtain the global existence of the weak solution in H(S) under some sign assumption on the initial values and prove the convergence of the corresponding finite particle approximation method.

متن کامل

Finite Element Approximation to a Finite-Size Modified Poisson-Boltzmann Equation

The inclusion of steric effects is important when determining the electrostatic potential near a solute surface. We consider a modified form of the Poisson-Boltzmann equation, often called the Poisson-Bikerman equation, in order to model these effects. The modifications lead to bounded ionic concentration profiles and are consistent with the Poisson-Boltzmann equation in the limit of zero-size ...

متن کامل

Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation

Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation ut + uxxx + ǫ|∂x| u = 2(u)x, u(0) = φ, where 0 < ǫ, α ≤ 1 and u is a real-valued function, we show that it is uniformly globally well-posed in Hs (s ≥ 1) for all ǫ ∈ (0, 1]. Moreover, we prove that for any s ≥ 1 and T > 0, its solution converges in C([0, T ]; Hs) to that of the MKdV equation if ǫ tends to 0.

متن کامل

Well-posedness for the 2d Modified Zakharov-kuznetsov Equation

We prove that the initial value problem for the two-dimensional modified ZakharovKuznetsov equation is locally well-posed for data in H(R), s > 3/4. Even though the critical space for this equation is L(R) we prove that well-posedness is not possible in such space. Global well-posedness and a sharp maximal function estimate are also established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008